Random Projection Trees for Vector Quantization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Projection Trees Revisited

The Random Projection Tree (RPTREE) structures proposed in [1] are space partitioning data structures that automatically adapt to various notions of intrinsic dimensionality of data. We prove new results for both the RPTREE-MAX and the RPTREE-MEAN data structures. Our result for RPTREE-MAX gives a nearoptimal bound on the number of levels required by this data structure to reduce the size of it...

متن کامل

Competitive Neural Trees for Vector Quantization

This paper presents a self-organizing neural architecture for vector quantization, called Competitive Neural Tree (CNeT). At the node level, the CNeT employs unsupervised competitive learning. The CNeT performs hierarchical clustering of the feature vectors presented to it as examples, while its growth is controlled by a splitting criterion. Because of the tree structure, the prototype in the C...

متن کامل

Random Projection-Based Anderson-Darling Test for Random Fields

In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...

متن کامل

Vector Quantization and Projection Neural Network

Classical data analysis techniques are generally linear. They fail to reduce the dimension of data sets where dependence between observed variables is non-linear. However, for numerous scientific, industrial and economic areas, it should be desirable to obtain a low-dimensional parametric representation of the data set. Model fitting is a way to obtain a usable representation of an observed phe...

متن کامل

Linear code-based vector quantization for independent random variables

The computationally efficient vector quantization for a discrete time source can be performed using lattices over block linear codes or convolutional codes. For high rates (low distortion) and uniform distribution the performance of a multidimensional lattice depends mainly on the normalized second moment (NSM) of the lattice. For relatively low rates (high distortions) and non-uniform distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2009

ISSN: 0018-9448

DOI: 10.1109/tit.2009.2021326